STL的一些性能测试
📖 阅读信息
阅读时间约 3 分钟 | 约 639 字 | 包含 690 行代码
众所周知 regex
库像马车一样慢,而 unrodered_map
也常常因为常数过大而被诸多算法竞赛选手所摒弃。但 STL
并非铁板一块,总会有一些好用且效率高的容器值得一用。本文试图对 STL
中的一些经典容器及算法进行性能测试与对比,看看哪些轮子是好用的。
测试平台和流程
本次测试使用 Intel® Pentium® Gold 8505 @ 2.50GHz 芯片,机带内存 8GB,操作系统为 Windows 24H2 26100.3775 ,编译及运行环境为 MSYS2 ,编译器使用 clang 20.1.3 和 gcc 13.3.0。
对每一次测试取不同数据量,每个数据量针对不同编译器测量多次后取平均值并计算绝对和相对不确定度。
Warning
你也看到了笔者的电脑很鶸,并且 MSYS2 环境造成的 I/O 瓶颈会对程序总的运行时间造成很大影响,所以本文会先独立跑一次纯数据I/O的计时测试,再从总运行时间里面扣除 I/O 损耗,得到最终结果。
测试数据由随机算法生成并保存。例如:
点击查看代码
| #include<iostream>
#include<random>
#include<chrono>
int main()
{
std::ios::sync_with_stdio(false);
std::cin.tie(nullptr);
std::cout.tie(nullptr);
std::random_device device;
unsigned int seed = device();
std::mt19937 engine(seed);
int n;
std::cin >> n;
std::cout << n;
while(n--)
std::cout<<engine()<<' ';
return 0;
}
|
测试计时流程如下:
- 使用
gcc
和 clang
开 -O2
编译待测源码
- 编译数据生成器
- 开启一轮测试
- 对每轮测试,先运行数据生成器生成数据,再打乱可执行文件运行顺序,按打乱后的顺序依次运行并记录用时,所有 I/O 均使用
shell
重定向符号将 iostream
重定向到文件 I/O。
- 回到步骤 4 并重复若干次,记录每次运行用时
- 计算平均用时和不确定度。
使用下面的脚本:
点击查看代码
| import os
import time
import random
def calculate_uncertainties(data):
n = len(data)
if n == 0:
return 0.0, 0.0, 0.0
total = sum(data)
mean = total / n
squared_diff_sum = sum((x - mean) ** 2 for x in data)
absolute_uncertainty = (squared_diff_sum / (n - 1)) ** 0.5 if n > 1 else 0
relative_uncertainty = absolute_uncertainty / mean * 100 if mean != 0 else 0
return mean, round(absolute_uncertainty, 2), round(relative_uncertainty, 3)
data_size = int(1e6)
test_round = 30
sorces_filename = ['a', 'b', 'c']
datagen_name = 'datagen'
testdata_filename = 'testdata.in'
output_filename = 'output.out'
print('[+] Cleaning directory.')
os.system('rm *.in *.out *.exe')
print('[+] Compiling data generator.')
os.system(f'g++ -O2 .\\{datagen_name}.cc -o {datagen_name}.exe')
#compile
gcc_instructions = [f'g++ -O2 -lm -o {fn}_gcc.exe {fn}.cc' for fn in sorces_filename]
clang_instructions = [f'clang++ -O2 -lm -o {fn}_clang.exe {fn}.cc' for fn in sorces_filename]
instructions = gcc_instructions + clang_instructions
print('[+] Compiling files.')
for cmd in instructions:
print(f' [+] Using command: {cmd}')
os.system(cmd)
gcc_run_cmd = [(f'.\\{fn}_gcc.exe < {testdata_filename} > {output_filename}', f'{fn}_gcc')\
for fn in sorces_filename]
clang_run_cmd = [(f'.\\{fn}_clang.exe < {testdata_filename} > {output_filename}', f'{fn}_clang')\
for fn in sorces_filename]
run_cmds = gcc_run_cmd + clang_run_cmd
time_data = {}
for cmd in run_cmds:
time_data[cmd[1]] = []
print('[+] Start test.')
#test
for once_round in range(test_round):
random.shuffle(run_cmds)
print(f'[+] Test round {once_round + 1}:')
print('[+] Cleaning directory.')
os.system('rm *.in *.out')
test_gen = f'(.\\{datagen_name}.exe {data_size}) > {testdata_filename}'
print('[+] Generating test data.')
os.system(test_gen)
for cmd in run_cmds:
run_cmd = cmd[0]
fn = cmd[1]
print(f' [+] Start testing file {fn}...')
start_time = time.time()
os.system(run_cmd)
end_time = time.time()
elapsed_time_ms = int(1000 * (end_time - start_time))
print(f' [-] Over. time usage: {elapsed_time_ms} ms')
time_data[cmd[1]].append(elapsed_time_ms)
print('[-] Time benchmark over.')
print()
print('-*- Results -*-')
print(f'Ran {test_round} rounds for {data_size} items.')
for item in time_data.items():
mean, u, up = calculate_uncertainties(item[1])
print(f'File {item[0]} average run time: {mean} ± {u} ms ({up}%).')
|
所有输入输出都使用 std::cin
和 std::cout
进行,流同步已经关闭。
std::vector
, std::array
和原生数组
本轮测试以下项目:
- 存入数据并输出
- 随机访问下标并求和
- 使用
std::sort
排序
顺序存储测试
点击查看代码
使用 std::vector:
点击查看代码
| #include<iostream>
#include<vector>
int main()
{
std::vector<int> vec;
int n;
std::cin >> n;
while (n--) {
int x;
std::cin >> x;
vec.push_back(x);
}
long long sum = 0;
for(auto i : vec) {
std::cout << i << ' ';
sum += i;
sum %= 998244353;
}
std::cout << sum << '\n';
for(auto it = vec.rbegin(); it != vec.rend(); ++it)
std::cout << *it << ' ';
return 0;
}
|
使用 std::array:
点击查看代码
| #include<iostream>
#include<array>
constexpr int SIZE = int(1e8+5);
std::array<int, SIZE> arr;
int main()
{
int n;
std::cin >> n;
for(int i = 0; i < n; ++i) {
int x;
std::cin >> x;
arr[i] = x;
}
long long sum = 0;
for(int i = 0; i < n; ++i) {
std::cout << arr[i] << ' ';
sum += arr[i];
sum %= 998244353;
}
std::cout << sum << '\n';
for(int i = n - 1; i >= 0; --i)
std::cout << arr[i] << ' ';
return 0;
}
|
使用原生数组:
点击查看代码
| #include<iostream>
constexpr int SIZE = int(1e8+5);
int arr[SIZE];
int main()
{
int n;
std::cin >> n;
for(int i = 0; i < n; ++i) {
int x;
std::cin >> x;
arr[i] = x;
}
long long sum = 0;
for(int i = 0; i < n; ++i) {
std::cout << arr[i] << ' ';
sum += arr[i];
sum %= 998244353;
}
std::cout << sum << '\n';
for(int i = n - 1; i >= 0; --i)
std::cout << arr[i] << ' ';
return 0;
}
|
随机访问测试
点击查看代码
使用 std::vector:
点击查看代码
| #include<iostream>
#include<vector>
#include<random>
int main()
{
std::random_device device;
unsigned int seed = device();
std::mt19937 engine(seed);
std::vector<int> vec;
int n, m;
std::cin >> n;
m = n;
while (n--) {
int x;
std::cin >> x;
vec.push_back(x);
}
long long sum = 0;
for(int _ = 0; _ < m ; ++_) {
auto i = vec[engine() % m];
sum += i;
sum %= 998244353;
}
std::cout << sum;
return 0;
}
|
使用 std::array:
点击查看代码
| #include<iostream>
#include<array>
#include<random>
constexpr size_t SIZE = 1e6+5;
std::array<int, SIZE> vec;
int main()
{
std::random_device device;
unsigned int seed = device();
std::mt19937 engine(seed);
int n, m;
std::cin >> n;
m = n;
for(int i = 0; i < n; ++i) {
int x;
std::cin >> x;
vec[i] = x;
}
long long sum = 0;
for(int _ = 0; _ < m ; ++_) {
auto i = vec[engine() % m];
sum += i;
sum %= 998244353;
}
std::cout << sum;
return 0;
}
|
使用原生数组:
点击查看代码
| #include<iostream>
#include<array>
#include<random>
constexpr size_t SIZE = 1e6+5;
int vec[SIZE];
int main()
{
std::random_device device;
unsigned int seed = device();
std::mt19937 engine(seed);
int n, m;
std::cin >> n;
m = n;
for(int i = 0; i < n; ++i) {
int x;
std::cin >> x;
vec[i] = x;
}
long long sum = 0;
for(int _ = 0; _ < m ; ++_) {
auto i = vec[engine() % m];
sum += i;
sum %= 998244353;
}
std::cout << sum;
return 0;
}
|
排序测试
点击查看代码
使用 std::vector :
点击查看代码
| #include<iostream>
#include<vector>
#include<random>
#include<algorithm>
int main()
{
std::random_device device;
unsigned int seed = device();
std::mt19937 engine(seed);
std::vector<int> vec;
int n, m;
std::cin >> n;
m = n;
while (n--) {
int x;
std::cin >> x;
vec.push_back(x);
}
std::sort(vec.begin(), vec.end());
return 0;
}
|
使用 std::array:
点击查看代码
| #include<iostream>
#include<array>
#include<random>
#include<algorithm>
constexpr size_t SIZE = 1e6+5;
std::array<int, SIZE> vec;
int main()
{
std::random_device device;
unsigned int seed = device();
std::mt19937 engine(seed);
int n, m;
std::cin >> n;
m = n;
for(int i = 0; i < n; ++i) {
int x;
std::cin >> x;
vec[i] = x;
}
std::sort(vec.begin(), vec.begin() + m + 1);
return 0;
}
|
使用原生数组:
点击查看代码
| #include<iostream>
#include<array>
#include<random>
#include<algorithm>
constexpr size_t SIZE = 1e6+5;
int vec[SIZE];
int main()
{
std::random_device device;
unsigned int seed = device();
std::mt19937 engine(seed);
int n, m;
std::cin >> n;
m = n;
for(int i = 0; i < n; ++i) {
int x;
std::cin >> x;
vec[i] = x;
}
std::sort(vec, vec + m + 1);
return 0;
}
|
结果和分析
点击查看测试结果
测试1:
| -*- Results -*-
Ran 50 rounds for 1000 items.
file a_gcc average run time: 114.56 ± 44.77 ms (39.083%).
file b_gcc average run time: 114.82 ± 47.26 ms (41.157%).
file c_gcc average run time: 109.58 ± 32.59 ms (29.745%).
file a_clang average run time: 63.96 ± 71.77 ms (112.212%).
file b_clang average run time: 56.38 ± 44.58 ms (79.077%).
file c_clang average run time: 61.92 ± 49.93 ms (80.635%).
-*- Results -*-
Ran 50 rounds for 100000 items.
file a_gcc average run time: 415.8 ± 51.44 ms (12.37%).
file b_gcc average run time: 420.12 ± 51.33 ms (12.218%).
file c_gcc average run time: 425.22 ± 59.65 ms (14.028%).
file a_clang average run time: 351.1 ± 52.09 ms (14.835%).
file b_clang average run time: 353.44 ± 51.66 ms (14.615%).
file c_clang average run time: 352.08 ± 49.55 ms (14.074%).
-*- Results -*-
Ran 20 rounds for 1000000 items.
file a_gcc average run time: 3383.9 ± 306.06 ms (9.045%).
file b_gcc average run time: 3349.85 ± 397.41 ms (11.864%).
file c_gcc average run time: 3346.3 ± 306.4 ms (9.156%).
file a_clang average run time: 3186.65 ± 296.0 ms (9.289%).
file b_clang average run time: 3225.5 ± 329.33 ms (10.21%).
file c_clang average run time: 3218.15 ± 303.94 ms (9.445%).
|
测试2:
| -*- Results -*-
Ran 50 rounds for 1000 items.
file a_gcc average run time: 90.12 ± 26.23 ms (29.107%).
file b_gcc average run time: 88.26 ± 13.46 ms (15.254%).
file c_gcc average run time: 86.8 ± 15.66 ms (18.044%).
file a_clang average run time: 32.16 ± 22.44 ms (69.763%).
file b_clang average run time: 28.6 ± 12.94 ms (45.254%).
file c_clang average run time: 30.24 ± 14.96 ms (49.455%).
-*- Results -*-
Ran 50 rounds for 100000 items.
file a_gcc average run time: 336.48 ± 21.05 ms (6.257%).
file b_gcc average run time: 334.84 ± 14.22 ms (4.246%).
file c_gcc average run time: 340.24 ± 18.11 ms (5.323%).
file a_clang average run time: 171.8 ± 16.36 ms (9.524%).
file b_clang average run time: 171.64 ± 14.08 ms (8.202%).
file c_clang average run time: 171.5 ± 13.84 ms (8.071%).
-*- Results -*-
Ran 20 rounds for 1000000 items.
file a_gcc average run time: 3029.5 ± 397.96 ms (13.136%).
file b_gcc average run time: 2998.55 ± 339.45 ms (11.321%).
file c_gcc average run time: 2968.05 ± 257.55 ms (8.677%).
file a_clang average run time: 1614.05 ± 114.01 ms (7.064%).
file b_clang average run time: 1641.65 ± 185.24 ms (11.284%).
file c_clang average run time: 1641.5 ± 146.92 ms (8.95%).
|
测试3:
| -*- Results -*-
Ran 50 rounds for 1000 items.
file a_gcc average run time: 82.18 ± 15.84 ms (19.279%).
file b_gcc average run time: 87.38 ± 20.09 ms (22.997%).
file c_gcc average run time: 85.56 ± 20.65 ms (24.14%).
file a_clang average run time: 22.98 ± 13.12 ms (57.088%).
file b_clang average run time: 25.1 ± 13.76 ms (54.824%).
file c_clang average run time: 29.16 ± 22.7 ms (77.836%).
-*- Results -*-
Ran 50 rounds for 100000 items.
file a_gcc average run time: 348.94 ± 40.78 ms (11.686%).
file b_gcc average run time: 348.36 ± 35.0 ms (10.048%).
file c_gcc average run time: 345.16 ± 38.33 ms (11.105%).
file a_clang average run time: 170.74 ± 19.72 ms (11.552%).
file b_clang average run time: 176.56 ± 25.44 ms (14.411%).
file c_clang average run time: 174.12 ± 21.54 ms (12.369%).
-*- Results -*-
Ran 20 rounds for 1000000 items.
file a_gcc average run time: 2923.05 ± 241.33 ms (8.256%).
file b_gcc average run time: 2978.0 ± 278.09 ms (9.338%).
file c_gcc average run time: 2990.55 ± 287.74 ms (9.622%).
file a_clang average run time: 1619.85 ± 148.65 ms (9.177%).
file b_clang average run time: 1602.1 ± 137.03 ms (8.553%).
file c_clang average run time: 1648.2 ± 238.51 ms (14.471%).
|
注意这里gcc
和clang
有一定的I/O性能差距,但是容器本身的用时差距不大,甚至没有因为性能波动导致的时间差大。
结论:对于所有情形,各个容器的性能基本没有差别,因为这三个容器底层都是连续的内存块,抽象的时间成本非常低。但是考虑到数组和裸指针纠缠不清的关系,还是更推荐使用 std::array
和 std::vector
。
由于 std::vector
是指数扩容,均摊的时间复杂度为 \(O(1)\) 。一般 std::vector
扩容的场合都是在读入阶段,所以性能开销也不大。而且即使 std::vector
的数据是申请在堆上面,对性能的影响也不大。
当然 std::array
就是原生数组很经典的零成本抽象了。
std::unordered_map
和手写哈希
本轮测试使用以下几份代码:
Warning
由于 CRC64 的实现利用了编译期生成 CRC 表,以及手写 unordered_map 的实现里面用到了一些比较新的语言特性,请确保你的编译器支持 c++17。如果遇到如下错误:
| ./unordered_map.cc:13:35: warning: variable declaration in a constexpr function is a C++14 extension [-Wc++14-extensions]
13 | std::array<uint64_t, 256> table = {};
| ^
./unordered_map.cc:14:9: error: statement not allowed in constexpr function
14 | for (int i = 0; i < 256; ++i) {
| ^
./unordered_map.cc:55:9: error: 'auto' return without trailing return type; deduced return types are a C++14 extension
55 | auto& get_item(const key_type& key)
| ^
./unordered_map.cc:60:15: error: 'auto' return without trailing return type; deduced return types are a C++14 extension
60 | const auto& get_item(const key_type& key) const
| ^
1 warning and 3 errors generated.
|
或者如下错误:
| ./unordered_map.cc:11:41: error: constexpr function never produces a constant expression [-Winvalid-constexpr]
11 | constexpr std::array<uint64_t, 256> generate_crc64_table()
| ^~~~~~~~~~~~~~~~~~~~
./unordered_map.cc:18:13: note: non-constexpr function 'operator[]' cannot be used in a constant expression
18 | table[i] = crc;
| ^
D:/msys64/clang64/include/c++/v1/array:268:65: note: declared here
268 | _LIBCPP_HIDE_FROM_ABI _LIBCPP_CONSTEXPR_SINCE_CXX17 reference operator[](size_type __n) _NOEXCEPT {
| ^
./unordered_map.cc:23:41: error: constexpr variable 'crc64_table' must be initialized by a constant expression
23 | constexpr std::array<uint64_t, 256> crc64_table = generate_crc64_table();
| ^ ~~~~~~~~~~~~~~~~~~~~~~
./unordered_map.cc:18:13: note: non-constexpr function 'operator[]' cannot be used in a constant expression
18 | table[i] = crc;
| ^
./unordered_map.cc:23:55: note: in call to 'generate_crc64_table()'
23 | constexpr std::array<uint64_t, 256> crc64_table = generate_crc64_table();
| ^~~~~~~~~~~~~~~~~~~~~~
D:/msys64/clang64/include/c++/v1/array:268:65: note: declared here
268 | _LIBCPP_HIDE_FROM_ABI _LIBCPP_CONSTEXPR_SINCE_CXX17 reference operator[](size_type __n) _NOEXCEPT {
| ^
2 errors generated.
|
请确保在编译时加上 `-std=c++17` 选项。
测试代码
a.cc
: 原生 std::unordered_map
加 CRC64 哈希
点击查看代码
| #include <array>
#include <string>
#include <iostream>
#include <unordered_map>
constexpr uint64_t CRC64_POLY = 0x42F0E1EBA9EA3693ULL;
constexpr std::array<uint64_t, 256> generate_crc64_table()
{
std::array<uint64_t, 256> table = {};
for (int i = 0; i < 256; ++i) {
uint64_t crc = i;
for (int j = 0; j < 8; ++j)
crc = (crc & 1) ? (crc >> 1) ^ CRC64_POLY : crc >> 1;
table[i] = crc;
}
return table;
}
constexpr std::array<uint64_t, 256> crc64_table = generate_crc64_table();
uint64_t crc64(const uint8_t *data, size_t length)
{
uint64_t crc = 0xFFFFFFFFFFFFFFFFULL;
for (size_t i = 0; i < length; i++) {
uint8_t index = (uint8_t)(crc ^ data[i]);
crc = (crc >> 8) ^ crc64_table[index];
}
return crc ^ 0xFFFFFFFFFFFFFFFFULL;
}
struct my_hash {
uint64_t operator()(const uint64_t& q) const
{
uint64_t data = q;
uint8_t *d = (uint8_t*)&data;
return crc64(d, sizeof(data));
}
};
int main()
{
int n, m;
std::cin>>n>>m;
std::unordered_map<uint64_t, bool, my_hash> map;
while(n--)
{
uint64_t s;
std::cin >> s;
map[s] = true;
}
while(m--)
{
uint64_t q;
std::cin >> q;
std::cout << (map[q] ? "hit\n" : "miss\n");
}
return 0;
}
|
b.cc
: 原生 std::unordered_map
加原生哈希
点击查看代码
| #include <array>
#include <string>
#include <iostream>
#include <unordered_map>
int main()
{
int n, m;
std::cin>>n>>m;
std::unordered_map<uint64_t, bool> map;
while(n--)
{
uint64_t s;
std::cin >> s;
map[s] = true;
}
while(m--)
{
uint64_t q;
std::cin >> q;
std::cout << (map[q] ? "hit\n" : "miss\n");
}
return 0;
}
|
点击查看代码
| #include <array>
#include <chrono>
#include <string>
#include <iostream>
#include <unordered_map>
struct my_hash {
static uint64_t splitmix64(uint64_t x) {
x += 0x9e3779b97f4a7c15;
x = (x ^ (x >> 30)) * 0xbf58476d1ce4e5b9;
x = (x ^ (x >> 27)) * 0x94d049bb133111eb;
return x ^ (x >> 31);
}
size_t operator()(uint64_t x) const {
static const uint64_t FIXED_RANDOM =
std::chrono::steady_clock::now().time_since_epoch().count();
return splitmix64(x + FIXED_RANDOM);
}
};
int main()
{
int n, m;
std::cin>>n>>m;
std::unordered_map<uint64_t, bool, my_hash> map;
while(n--)
{
uint64_t s;
std::cin >> s;
map[s] = true;
}
while(m--)
{
uint64_t q;
std::cin >> q;
std::cout << (map[q] ? "hit\n" : "miss\n");
}
return 0;
}
|
unordered_map.cc
: 手写实现哈希表加 CRC64 哈希
点击查看代码
| #include <list>
#include <array>
#include <vector>
#include <chrono>
#include <utility>
#include <iostream>
namespace crc64 {
constexpr uint64_t CRC64_POLY = 0x42F0E1EBA9EA3693ULL;
constexpr std::array<uint64_t, 256> generate_crc64_table()
{
std::array<uint64_t, 256> table = {};
for (int i = 0; i < 256; ++i) {
uint64_t crc = i;
for (int j = 0; j < 8; ++j)
crc = (crc & 1) ? (crc >> 1) ^ CRC64_POLY : crc >> 1;
table[i] = crc;
}
return table;
}
constexpr std::array<uint64_t, 256> crc64_table = generate_crc64_table();
uint64_t crc64(const uint8_t *data, size_t length)
{
uint64_t crc = 0xFFFFFFFFFFFFFFFFULL;
for (size_t i = 0; i < length; i++) {
uint8_t index = (uint8_t)(crc ^ data[i]);
crc = (crc >> 8) ^ crc64_table[index];
}
return crc ^ 0xFFFFFFFFFFFFFFFFULL;
}
}
constexpr size_t hash_mod = 126271;
template<typename key_type, typename value_type>
class unordered_map {
typedef std::pair<key_type, value_type> mapped_type;
private:
std::vector<std::list<mapped_type>> table;
size_t pair_cnt = 0;
size_t get_idx(const key_type& key)
{
auto hash = crc64::crc64((uint8_t*) &key, sizeof(key));
return static_cast<size_t>(hash % hash_mod);
}
const size_t get_idx(const key_type& key) const
{
auto hash = crc64::crc64((uint8_t*) &key, sizeof(key));
return static_cast<size_t>(hash % hash_mod);
}
auto& get_item(const key_type& key)
{
auto idx = get_idx(key);
return table[idx];
}
const auto& get_item(const key_type& key) const
{
auto idx = get_idx(key);
return table[idx];
}
public:
unordered_map() : table(hash_mod) {}
value_type& operator[](const key_type& key)
{
auto& item = get_item(key);
for(auto& val : item)
if(val.first == key)
return val.second;
value_type val;
item.push_back(std::make_pair(key, val));
++pair_cnt;
return item.back().second;
}
bool empty() const noexcept
{
return !(pair_cnt);
}
bool find(const key_type &key) const noexcept
{
const auto& item = get_item(key);
for(const auto& val : item)
if(val.first == key)
return true;
return false;
}
void erase(const key_type& key)
{
auto& item = get_item(key);
for(auto it = item.begin(); it != item.end(); ++it)
if(it->first == key) {
item.erase(it);
--pair_cnt;
break;
}
}
};
int main()
{
int n, m;
std::cin>>n>>m;
unordered_map<uint64_t, bool> map;
while(n--)
{
uint64_t s;
std::cin >> s;
map[s] = true;
}
while(m--)
{
uint64_t q;
std::cin >> q;
std::cout << (map.find(q) ? "hit\n" : "miss\n");
}
return 0;
}
|
测试数据使用下面的代码生成:
点击查看代码
| #include<iostream>
#include<random>
#include<chrono>
int main(int argc, char* argv[])
{
std::ios::sync_with_stdio(false);
std::cin.tie(nullptr);
std::cout.tie(nullptr);
std::random_device device;
unsigned int seed = device();
std::mt19937 engine(seed);
int n = atoi(argv[1]), m = 3 * n;
std::cout << n << ' ' << m << ' ';
while(n--)
std::cout<< (engine() % 100000) * 126271 + (n % 2) <<' ';
while(m--)
std::cout<< (engine() % 100000) * 126271 + (engine()) % 100 <<' ';
return 0;
}
|
本来这个测试数据是准备卡原生哈希 126271
的模数的,但是可能是因为编译器比较新(?)貌似没卡掉,所以我改写了一下手写哈希让它能被 126271
卡掉。
结果和分析
点击查看测试结果
I/O 用时:
| -*- Results -*-
Ran 30 rounds for 1000000 items.
File a_gcc average run time: 17040.7 ± 82.11 ms (0.482%).
File b_gcc average run time: 17060.333333333332 ± 132.67 ms (0.778%).
File c_gcc average run time: 16987.466666666667 ± 179.95 ms (1.059%).
File unordered_map_gcc average run time: 17438.1 ± 702.97 ms (4.031%).
File a_clang average run time: 11680.5 ± 478.32 ms (4.095%).
File b_clang average run time: 11649.066666666668 ± 265.44 ms (2.279%).
File c_clang average run time: 11746.3 ± 497.44 ms (4.235%).
File unordered_map_clang average run time: 11663.466666666667 ± 262.6 ms (2.251%).
|
总用时:
| -*- Results -*-
Ran 30 rounds for 1000000 items.
File a_gcc average run time: 19452.466666666667 ± 586.76 ms (3.016%).
File b_gcc average run time: 19013.066666666666 ± 135.53 ms (0.713%).
File c_gcc average run time: 19388.8 ± 535.83 ms (2.764%).
File unordered_map_gcc average run time: 18337.833333333332 ± 683.24 ms (3.726%).
File a_clang average run time: 13868.1 ± 262.02 ms (1.889%).
File b_clang average run time: 13662.266666666666 ± 109.66 ms (0.803%).
File c_clang average run time: 13723.433333333332 ± 68.47 ms (0.499%).
File unordered_map_clang average run time: 12740.7 ± 140.08 ms (1.099%).
|
可见扣除 I/O 用时后,使用原生 std::unordered_map
无论采用什么哈希算法,运行时间都在 2s
左右,而且新引入的哈希算法还会增大原本就很大的常数。手写的 unordered_map
则可以把时间卡进 1s
左右。
下面我们来卡一下手写哈希,用相同的数据生成器,只不过把手写哈希的 CRC64 换成了按输入数据原样返回:
点击查看测试结果
I/O 用时:
| -*- Results -*-
Ran 20 rounds for 100000 items.
File a_gcc average run time: 1911.85 ± 357.35 ms (18.691%).
File b_gcc average run time: 1838.35 ± 166.73 ms (9.069%).
File c_gcc average run time: 1835.6 ± 153.11 ms (8.341%).
File unordered_map_gcc average run time: 1855.55 ± 179.25 ms (9.66%).
File a_clang average run time: 1259.5 ± 144.72 ms (11.49%).
File b_clang average run time: 1215.6 ± 114.12 ms (9.388%).
File c_clang average run time: 1229.0 ± 120.62 ms (9.814%).
File unordered_map_clang average run time: 1250.1 ± 146.91 ms (11.752%).
|
总用时:
| -*- Results -*-
Ran 20 rounds for 100000 items.
File a_gcc averag run time: 2186.8 ± 306.2 ms (14.002%).
File b_gcc average run time: 2183.45 ± 462.09 ms (21.163%).
File c_gcc average run time: 2193.9 ± 496.88 ms (22.648%).
File unordered_map_gcc average run time: 3621.0 ± 416.51 ms (11.503%).
File a_clang average run time: 1509.0 ± 278.87 ms (18.48%).
File b_clang avera`ge run time: 1611.0 ± 418.77 ms (25.995%).
File c_clang average run time: 1510.6 ± 292.32 ms (19.351%).
File unordered_map_clang average run time: 3298.75 ± 1400.99 ms (42.47%).
|
可以看到常规算法 300ms
级一下子就被卡到了 2000ms
级。所以可以得出结论了:
- 原生的
std::unordered_map
常数巨大,随便手写一个都能快一倍。
- 卡哈希对算法性能影响巨大。为了避免被卡哈希,可以用其他密码学安全的哈希或者利用时间引入随机性。
std::unordered_map
和手写哈希对比std::map